12. May 3:00 PM – 4:00 PM
Randomization is very important for modern verification. Still, very few designers apply randomization sufficiently in their testbenches. This means they are missing out on a very important method for finding potential bugs in their design, and as a result, their products have significantly more undetected bugs. Randomization can be used in many ways, but it is of course, also important to know when not to use it.
This presentation will show several levels of applying randomization, both with respect to the actual DUT and the randomization functionality available. The main principles shown are tool independent, but the new UVVM randomization functionality will be used as examples, thus also giving you a kick start using this great tool.
Agenda
- Where could randomization be applied?
- Directed vs Random
- Constrained Random
- Advanced Randomization using various approaches
- Optimized Randomization and how that works
- Various examples
- Great features to improve your testbench
UVVM, VVC-Framework Testbench Sequencer
Essential steps to simplify VHDL testbenches with OSVVM
This Getting Started webinar focuses on the first, essential steps you need to take if you want to improve your VHDL testbench approach with OSVVM.
Checking AXI connections with ALINT-PRO and Riviera-PRO
AXI has become the most popular internal bus protocol with today’s FPGA and SoC FPGA designs. ALINT-PRO enables FPGA designers to extract, review and statically verify AXI bus interfaces. In addition, ALINT-PRO can assist with automatic generation of test harnesses...
FPGA Design – Verification Code, Functional and Specification Coverage
Functional coverage is often mentioned together with constrained-random verification, which is a great combination.
FPGA Verification Architecture Optimization with UVVM
How to make a simple, well-structured, and efficient testbench using the open-source Universal VHDL Verification Methodology (UVVM) architecture.
FPGA Design Architecture Optimization
The FPGA design architecture is the single most important and primary factor in achieving development efficiency, quality, and reliability. The difference between a good and a bad design architecture can be about 50% of the workload.
Using SVA for Requirements-Based Verification of Safety-Critical FPGA Designs
Thursday 10. March from 3.00 pm to 4.00pm Requirements-based verification (RBV) is a popular verification process for FPGA designs used in safety-critical systems. The effectiveness of RBV is limited by the quality and precision of the requirements. Verification...
Increase your productivity with Continuous Integration flows
In a team environment, verification engineers push code changes every day, and sometimes several times a day, to a shared repository. Each change has the potential to introduce new bugs into the design. Accordingly, when many changes are being made, it is difficult to...
Constraint Random Verification with Python and Cocotb
Cocotb, an approach to using Python as a testing language, allows developers to start with small, directed test benches and evolve them into more thorough constraint random tests.
Using OVL for Assertion-Based Verification of Verilog and VHDL Designs
Open Verification Library (OVL) is a library of property checkers for digital circuit descriptions written in popular Hardware Description Languages and maintained by Accelera. The OVL checkers could be used not only in dynamic simulation, but also in formal...
The most error prone FPGA corner cases
Cycle related corner cases are probably the worst and main reason for undetected bugs on many FPGAs. To explain this in a simple way, – a cycle related corner case is for instance if you have an event counter where the number of counted events is critical and you read and reset this counter at regular intervals.